- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0001000000000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Mengran Gou, Fei Xiong (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
& Ayala, O. (0)
-
& Babbitt, W. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Bilinear pooling has been recently proposed as a feature encoding layer, which can be used after the convolutional layers of a deep network, to improve performance in mul- tiple vision tasks. Different from conventional global aver- age pooling or fully connected layer, bilinear pooling gath- ers 2nd order information in a translation invariant fash- ion. However, a serious drawback of this family of pooling layers is their dimensionality explosion. Approximate pool- ing methods with compact properties have been explored towards resolving this weakness. Additionally, recent re- sults have shown that significant performance gains can be achieved by adding 1st order information and applying ma- trix normalization to regularize unstable higher order in- formation. However, combining compact pooling with ma- trix normalization and other order information has not been explored until now. In this paper, we unify bilinear pool- ing and the global Gaussian embedding layers through the empirical moment matrix. In addition, we propose a novel sub-matrix square-root layer, which can be used to normal- ize the output of the convolution layer directly and mitigate the dimensionality problem with off-the-shelf compact pool- ing methods. Our experiments on three widely used fine- grained classification datasets illustrate that our proposed architecture, MoNet, can achieve similar or better perfor- mance than with the state-of-art G 2 DeNet. Furthermore, when combined with compact pooling technique, MoNet ob- tains comparable performance with encoded features with 96% less dimensions.more » « less
An official website of the United States government

Full Text Available